History of photography

From Wikipedia, the free encyclopedia

Nicéphore Niépce's earliest surviving camera photograph, circa 1826: View from the Window at Le Gras (Saint-Loup-de-Varennes, France)

The history of photography has roots in remote antiquity with the discovery of the principle of the camera obscura and the observation that some substances are visibly altered by exposure to light. As far as is known, nobody thought of bringing these two phenomena together to capture camera images in permanent form until around 1800, when Thomas Wedgwood made the first reliably documented although unsuccessful attempt. In the mid-1820s, Joseph Nicéphore Niépce succeeded, but several days of exposure in the camera were required and the earliest results were very crude. Niépce's associate Louis Daguerre went on to develop the daguerreotype process, the first publicly announced photographic process, which required only minutes of exposure in the camera and produced clear, finely detailed results. It was commercially introduced in 1839, a date generally accepted as the birth year of practical photography.

The metal-based daguerreotype process soon had some competition from the paper-based calotype negative and salt print processes invented by Henry Fox Talbot. Subsequent innovations reduced the required camera exposure time from minutes to seconds and eventually to a small fraction of a second; introduced new photographic media which were more economical, sensitive or convenient, including roll films for casual use by amateurs; and made it possible to take pictures in natural color as well as in black-and-white.

The introduction of computer-based electronic digital cameras in the late 20th century soon revolutionized photography. During the first decade of the 21st century, traditional film-based photochemical methods were increasingly marginalized as the practical advantages of the new technology became widely appreciated and the image quality of moderately priced digital cameras was continually improved.

TPL_BEEZ3_NEXTTAB

Etymology

"Boulevard du Temple", a daguerreotype made by Louis Daguerre in 183

The coining of the word "Photography" has been attributed in 1839 to Sir John Herschel based on the Greek φῶς (phos), (genitive: phōtós) meaning "light", and γραφή (graphê), meaning "drawing, writing", together meaning "drawing with light"

Technological background

Photography is the result of combining several different technical discoveries. Long before the first photographs were made, Chinese philosopher Mo Ti and Greek mathematicians Aristotle and Euclid described a pinhole camera in the 5th and 4th centuries BCE. In the 6th century CE, Byzantine mathematician Anthemius of Tralles used a type of camera obscura in his experiments

Ibn al-Haytham (Alhazen) (965 in Basra – c. 1040 in Cairo) studied the camera obscura and pinhole camera, Albertus Magnus (1193/1206–80) discovered silver nitrate, and Georges Fabricius (1516–71) discovered silver chloride. Daniel Barbaro described a diaphragm in 1568. Wilhelm Homberg described how light darkened some chemicals (photochemical effect) in 1694. The novel Giphantie (by the French Tiphaigne de la Roche, 1729–74) described what could be interpreted as photography.

Early History: Development of chemical photography

Monochrome process

Around the year 1800, Thomas Wedgwood made the first known attempt to capture the image in a camera obscura by means of a light-sensitive substance. He used paper or white leather treated with silver nitrate. Although he succeeded in capturing the shadows of objects placed on the surface in direct sunlight, and even made shadow-copies of paintings on glass, it was reported in 1802 that " the images formed by means of a camera obscura have been found too faint to produce, in any moderate time, an effect upon the nitrate of silver." The shadow images eventually darkened all over because " no attempts that have been made to prevent the uncoloured part of the copy or profile from being acted upon by light have as yet been successful." Wedgwood may have prematurely abandoned these experiments because of his frail and failing health; he died aged 34 in 1805.

The oldest surviving permanent photograph of the image formed in a camera was created in 1826 or 1827 by the French inventor Joseph Nicéphore Niépce. The photograph was produced on a polished pewter plate. The light-sensitive material was a thin coating of bitumen, a naturally occurring petroleum tar, which was dissolved in white petroleum, applied to the surface of the plate and allowed to set before use. After a very long exposure in the camera (traditionally said to be eight hours, but possibly several days), the bitumen was sufficiently hardened in proportion to its exposure to light that the unhardened part could be removed with a solvent, leaving a positive image with the light regions represented by hardened bitumen and the dark regions by bare pewter. To see the image plainly, the plate had to be lit and viewed in such a way that the bare metal appeared dark and the bitumen relatively light.One of the oldest photographic portraits known, made by Joseph Draper of New York, in 1839[8] or 1840, of his sister, Anna Katherine Draper.

Niépce had previously experimented with paper coated with silver chloride. Unlike earlier experimenters with silver salts, he succeeded in photographing the images formed in a small camera, producing his first results in 1816, but like his predecessors he was unable to prevent the coating from darkening all over when exposed to light for viewing. As a result, he had become disenchanted with silver compounds and turned his attention to bitumen and other light-sensitive organic substances.

In partnership, Niépce (in Chalon-sur-Saône) and Louis Daguerre (in Paris) refined the bitumen process, substituting a more sensitive resin and a very different post-exposure treatment that yielded higher-quality and more easily viewed images. Exposure times in the camera, although somewhat reduced, were still measured in hours.

In 1833 Niépce died of a stroke, leaving his notes to Daguerre. More interested in silver-based processes than Niépce had been, Daguerre experimented with photographing camera images directly onto a silver-surfaced plate that had been fumed with iodine vapor, which reacted with the silver to form a coating of silver iodide. Exposure times were still impractically long. Then, by accident according to traditional accounts, Daguerre made the pivotal discovery that an invisibly faint latent image produced on such a plate by a much shorter exposure could be "developed" to full visibility by mercury fumes. This brought the required exposure time down to a few minutes under optimum conditions. A strong hot solution of common salt served to stabilize or fix the image by removing the remaining silver iodide. On 7 January 1839, Daguerre announced this first complete practical photographic process to the French Academy of Sciences, and the news quickly spread. At first, all details of the process were withheld and specimens were shown only to a trusted few. Arrangements were made for the French government to buy the rights in exchange for pensions for Niépce's son and Daguerre and then present it to the world (with the de facto exception of Great Britain) as a free gift. Complete instructions were published on 19 August 1839.

After reading early reports of Daguerre's invention, William Henry Fox Talbot, who had succeeded in creating stabilized photographic negatives on paper in 1835, worked on perfecting his own process. In early 1839 he acquired a key improvement, an effective fixer, from John Herschel, the astronomer, who had previously shown that hyposulfite of soda (commonly called "hypo" and now known formally as sodium thiosulfate) would dissolve silver salts. News of this solvent also reached Daguerre, who quietly substituted it for his less effective hot salt water treatment.
A calotype print showing the American photographer Frederick Langenheim (circa 1849). Note, the caption on the photo calls the process Talbotype

Talbot's early silver chloride "sensitive paper" experiments required camera exposures of an hour or more. In 1840, Talbot invented the calotype process, which, like Daguerre's process, used the principle of chemical development of a faint or invisible "latent" image to reduce the exposure time to a few minutes. Paper with a coating of silver iodide was exposed in the camera and developed into a translucent negative image. Unlike a daguerreotype, which could only be copied by rephotographing it with a camera, a calotype negative could be used to make a large number of positive prints by simple contact printing. The calotype had yet another distinction compared to other early photographic processes, in that the finished product lacked fine clarity due to its translucent paper negative. This was seen as a positive attribute for portraits because it softened the appearance of the human face. Talbot patented this process, which greatly limited its adoption. He spent the rest of his life in lawsuits defending the patent until he gave up on photography. Later George Eastman refined Talbot's process, which is the basic technology used by chemical film cameras today. Hippolyte Bayard had also developed a method of photography but delayed announcing it, and so was not recognized as its inventor.

In 1839, John Herschel made the first glass negative, but his process was difficult to reproduce. Slovene Janez Puhar invented a process for making photographs on glass in 1841; it was recognized on June 17, 1852 in Paris by the Académie Nationale Agricole, Manufacturière et Commerciale. In 1847, Nicephore Niépce's cousin, the chemist Niépce St. Victor, published his invention of a process for making glass plates with an albumen emulsion; the Langenheim brothers of Philadelphia and John Whipple and William Breed Jones of Boston also invented workable negative-on-glass processes in the mid-1840s.

In 1851 Frederick Scott Archer invented the collodion process. Photographer and children's author Lewis Carroll used this process.
Roger Fenton's assistant seated on Fenton's photographic van, Crimea, 1855.

Herbert Bowyer Berkeley experimented with his own version of collodian emulsions after Samman introduced the idea of adding dithionite to the pyrogallol developer. Berkeley discovered that with his own addition of sulfite, to absorb the sulfur dioxide given off by the chemical dithionite in the developer, that dithionite was not required in the developing process. In 1881 he published his discovery. Berkeley's formula contained pyrogallol, sulfite and citric acid. Ammonia was added just before use to make the formula alkaline. The new formula was sold by the Platinotype Company in London as Sulpho-Pyrogallol Developer.

Nineteenth-century experimentation with photographic processes frequently became proprietary. The German-born, New Orleans photographer Theodore Lilienthal successfully sought legal redress in an 1881 infringement case involving his "Lambert Process" in the Eastern District of Louisiana.

TPL_BEEZ3_NEXTTAB

Popularization

Roger Fenton's assistant seated on Fenton's photographic van, Crimea, 1855.

The daguerreotype proved popular in response to the demand for portraiture that emerged from the middle classes during the Industrial Revolution. This demand, that could not be met in volume and in cost by oil painting, added to the push for the development of photography.

In 1847, Count Sergei Lvovich Levitsky designed a bellows camera which significantly improved the process of focusing. This adaptation influenced the design of cameras for decades and is still found in use today in some professional cameras. While in Paris, Levitsky would become the first to introduce interchangeable decorative backgrounds in his photos, as well as the retouching of negatives to reduce or eliminate technical deficiencies. Levitsky was also the first photographer to portray a photo of a person in different poses and even in different clothes (for example, the subject plays the piano and listens to himself).

Roger Fenton and Philip Henry Delamotte helped popularize the new way of recording events, the first by his Crimean war pictures, the second by his record of the disassembly and reconstruction of The Crystal Palace in London. Other mid-nineteenth-century photographers established the medium as a more precise means than engraving or lithography of making a record of landscapes and architecture: for example, Robert Macpherson's broad range of photographs of Rome, the interior of the Vatican, and the surrounding countryside became a sophisticated tourist's visual record of his own travels.

By 1849, images captured by Levitsky on a mission to the Caucasus were exhibited by the famous Parisian optician Chevalier at the Paris Exposition of the Second Republic as an advertisement of their lenses. These photos would receive the Exposition's gold medal; the first time a prize of its kind had ever been awarded to a photograph.

That same year in 1849 in his St. Petersburg, Russia studio Levitsky would first propose the idea to artificially light subjects in a studio setting using electric lighting along with daylight. He would say of its use, "as far as I know this application of electric light has never been tried; it is something new, which will be accepted by photographers because of its simplicity and practicality".

In 1851, at an exhibition in Paris, Levitsky would win the first ever gold medal awarded for a portrait photograph.

In America, by 1851 a broadside by daguerreotypist Augustus Washington was advertising prices ranging from 50 cents to $10. However, daguerreotypes were fragile and difficult to copy. Photographers encouraged chemists to refine the process of making many copies cheaply, which eventually led them back to Talbot's process.

Ultimately, the modern photographic process came about from a series of refinements and improvements in the first 20 years. In 1884 George Eastman, of Rochester, New York, developed dry gel on paper, or film, to replace the photographic plate so that a photographer no longer needed to carry boxes of plates and toxic chemicals around. In July 1888 Eastman's Kodak camera went on the market with the slogan "You press the button, we do the rest". Now anyone could take a photograph and leave the complex parts of the process to others, and photography became available for the mass-market in 1901 with the introduction of the Kodak Brownie.

In the twentieth century, photography developed rapidly as a commercial service. End-user supplies of photographic equipment accounted for only about 20 percent of industry revenue. For the modern enthusiast photographer processing black and white film, little has changed since the introduction of the 35mm film Leica camera in 1925.

Color process

The first durable color photograph, taken by Thomas Sutton in 1861

A practical means of color photography was sought from the very beginning. Results were demonstrated as early as 1848, but exposures lasting for hours or days were required and the colors were so light-sensitive they would only bear very brief inspection in dim light.

The first durable color photograph was a set of three black-and-white photographs taken through red, green and blue color filters and shown superimposed by using three projectors with similar filters. It was taken by Thomas Sutton in 1861 for use in a lecture by the Scottish physicist James Clerk Maxwell, who had proposed the method in 1855. The photographic emulsions then in use were insensitive to most of the spectrum, so the result was very imperfect and the demonstration was soon forgotten. Maxwell's method is now most widely known through the early 20th century work of Sergei Prokudin-Gorskii. It was made practical by Hermann Wilhelm Vogel's 1873 discovery of a way to make emulsions sensitive to the rest of the spectrum, gradually introduced into commercial use beginning in the mid-1880s.

Two French inventors, Louis Ducos du Hauron and Charles Cros, working unknown to each other during the 1860s, famously unveiled their nearly identical ideas on the same day in 1869. Included were methods for viewing a set of three color-filtered black-and-white photographs in color without having to project them, and for using them to make full-color prints on paper.

The first widely used method of color photography was the Autochrome plate, commercially introduced in 1907. It was based on one of Louis Ducos du Hauron's ideas: instead of taking three separate photographs through color filters, take one through a mosaic of tiny color filters overlaid on the emulsion and view the results through an identical mosaic. If the individual filter elements were small enough, the three primary colors would blend together in the eye and produce the same additive color synthesis as the filtered projection of three separate photographs. Autochrome plates had an integral mosaic filter layer composed of millions of dyed potato starch grains. Reversal processing was used to develop each plate into a transparent positive that could be viewed directly or projected with an ordinary projector. The mosaic filter layer absorbed about 90 percent of the light passing through, so a long exposure was required and a bright projection or viewing light was desirable. Competing screen plate products soon appeared and film-based versions were eventually made. All were expensive and until the 1930s none was "fast" enough for hand-held snapshot-taking, so they mostly served a niche market of affluent advanced amateurs.

A new era in color photography began with the introduction of Kodachrome film, available for 16 mm home movies in 1935 and 35 mm slides in 1936. It captured the red, green and blue color components in three layers of emulsion. A complex processing operation produced complementary cyan, magenta and yellow dye images in those layers, resulting in a subtractive color image. Maxwell's method of taking three separate filtered black-and-white photographs continued to serve special purposes into the 1950s and beyond, and Polachrome, an "instant" slide film that used the Autochrome's additive principle, was available until 2003, but all the color films for making prints and slides currently (2013) available use the multilayer emulsion approach pioneered by Kodachrome.

TPL_BEEZ3_NEXTTAB

Development of digital photography

 

In 1957, a team led by Russell A. Kirsch at the National Institute of Standards and Technology developed a binary digital version of an existing technology, the wirephoto drum scanner, so that alphanumeric characters, diagrams, photographs and other graphics could be transferred into digital computer memory. The first photograph scanned was a picture of Kirsch's son Walden. The image resolution was 176x176 pixels with only one bit per pixel, i.e., stark black and white with no intermediate gray tones, but by combining multiple scans of the photograph done with different black-white threshold settings, grayscale information could also be acquired.

The charge-coupled device (CCD) is the most important invention for digital photography. It was invented in 1969 by Willard Boyle and George E. Smith at AT&T Bell Labs. The lab was working on the Picturephone and on the development of semiconductor bubble memory. Merging these two initiatives, Boyle and Smith conceived of the design of what they termed 'Charge "Bubble" Devices'. The essence of the design was the ability to transfer charge along the surface of a semiconductor.

1973 - Fairchild Semiconductor releases the first large image forming CCD chip; 100 rows and 100 columns.
1975 - Bryce Bayer of Kodak develops the Bayer filter mosaic pattern for CCD color image sensors
1986 - Kodak scientists develop the world's first megapixel sensor.

The web has been a popular medium for storing and sharing photos ever since the first photograph was published on the web by Tim Berners-Lee in 1992 (an image of the CERN house band Les Horribles Cernettes). Today popular sites such as Flickr, Picasa and PhotoBucket are used by millions of people to share their pictures.

 

35mm-film-cmos-sensor

Content

© 2014 Luca Di Stefano

All Rights Reserved
No part of this website or any of its contents may be reproduced, copied, modified or adapted, without the prior written consent of the author, unless otherwise indicated for stand-alone materials.